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Abstract 
Distributed computing systems consisting of several computers that do not share a memory or a clock, the computers 
communicate with each other by exchanging messages over a communication network. To achieve authenticity, the fault-
tolerance scheme of the distributed computing system must be reconsidered. This type of problem is known as a Byzantine 
Agreement Problem (BAP). It requires all fault-free processors to agree on a common value, even if some components are 
fault. Consequently, there have been significant studies of this agreement problem in distributed systems. However, the 
traditional Byzantine Agreement protocols focus on running k ≥ 3m+1 rounds of message exchange continuously to make each 
fault-free processor reach an agreement. In other way, since having a large number of messages results in a large protocol 
overhead, those protocols are inefficient and unreasonable, especially for some network environments which have large 
number of processors.,Byzantine Agreement protocol can collect, compare and replace the received values to find 
the authentic processors and replace the values sent by the fault processors. Where sites (or processors) often compete as well 
as cooperate to achieve a common goal, it is often required that sites reach mutual agreement. [1] 
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1. INTRODUCTION

In this paper, authenticate communication in distributed 
systems. One important aspect is how the system 
effectively copes with failures. There exist many well-
studied failures, like crash failure which failed component 
simply stops communicating messages. Yet some other 
failures may send out conflicting messages to different 
system components. Lamport et al. investigated this failure, 
and they model it as the Byzantine Generals Problem, 
which made this special type of failure well known as the 
“Byzantine failure’’ model. Their simple conclusion is that, 
using only oral messages (which implied the message is 
forgeable), the problem is solvable if more than two thirds 
of the generals are loyal. With unforgivable (written) 
messages, the problem is solvable for any number of 
generals and possible faulters. These results indeed are very 
interesting and let us see how the authors unfold this story 
little by little. The authors motivated the problem as the 
decision making process of the Byzantine Generals, among 
who may exists faulters. They made goals for the Byzantine 
Generals that:1. All loyal generals decide upon the same 
plan of action; 2. A small number of faulters cannot cause 
the loyal generals to adopt a bad plan. These two 
reasonable goals say about the outcome of the decision, yet 
they are hard to formalize (especially goal 2). Instead, 
authors took another angle by considering how the actions 
(decisions) were taken. Given all the messages the generals 
communicate: v_1, v_2,... ,v_k, our goal is to find a 
combining scheme to generate a single plan of action out of 
all these values. Applying this strategy to convert our goals 
into a formal definition.[2] 

2. TAXONOMY OF PROBLEMS

All non-faulty processors must agree on value(s) from a 
non-faulty processor 
Byzantine agreement: 
The source processor broadcasts its initial value to all other 
processes. 
Agreement: All nonfaulty processors agree on the same 
value. 
Validity: If the source processor is nonfaulty, the common 
agreed upon value by all nonfaulty processors should be the 
initial value of the source 
Consensus: 
Every processor broadcast the initial value to all other 
processors. 
Agreement: All nonfaulty processors agree on the same 
value. 
Validity: If the initial value of every nonfaulty processor is 
v, then the agreed upon common value by all nonfaulty 
processors must be v. 
Interactive Consistency: 
Every processor broadcasts its initial value to all other 
processors. 
Agreement: All nonfaulty processors agree on the same 
vector. (v_1, v_2, ..., v_k). 
Validity: If the ith processor is nonfaulty and its initial 
value is v_i, then the ith value to be agreed on by all 
nonfaulty processors must be v_i.[3] 

3. LAMPORT-SHOSTAK-PEASE ALGORITHM

The authors provided the Oral Message algorithm (OM) for 
this scenario. Given one commander and n−1 lieutenants, 
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for all nonnegative integers m, we have recursive 
algorithms 
Algorithm OM(0). 
(1)  The commander sends his value to every lieutenant. 
(2)  Each lieutenant uses the value he receives from the 

commander, or uses the value RETREAT if he 
receives no value. 

Algorithm OM(m), m>0. 
(1)  The commander sends his value to every lieutenant. 
(2)  For each i, let v_i be the value lieutenant i receives 

from the commander, or else be RETREAT if he 
receives no value. Lrutenant i acts as the commander 
in Algorithm OM(m-1) to send the value v_i to each of 
the n-2 other lieutenants. 

(3)  For each i, and each j ≠ i, let v_j be the value lieutenant 
i received from lieutenant j in step (2), or else 
RETREAT if he received no such value. Lieutenant i 
uses the value majority (v_1, v_2,v_3, ..., v_{k-1}).[4] 

 
4.  RESULTS 

Impossibility Result: 
Byzantine agreement is impossible  
if m > ë(k-1)/3 û 
e.g., ë (3-1)/3 û = 0 
Byzantine agreement is impossible with < (m+1) message 
exchanges 
LSPA algorithms for solving the Byzantine agreement 
problem that falls within these bounds. However, we will 
also see that the algorithms are fairly complex. This should 
naturally lead one to think twice when designing a system, 
to see if there is a way to avoid creating situations that 
require agreement. See the following simple example with 
3 processors, from text. The arrows indicate state 
information made available to other nodes. In the first case, 
processor A initiates the agreement protocol and processor 
B is maliciously faulty. 

 
C sees that B has decided for 0 and A has decided for 1. To 
satisfy the Byzantine agreement problem, C must decide 
for 1, since A is not faulty and A has decided for 1. This 
implies that the algorithm followed by C (and hence by any 
non-faulty non-initiating processor) must break ties in favor 
of the initiating processor. 
The next case is where the processor A is a faulter, and 
reports different values to B and C. 

 

B thinks A has decided for 0 and C thinks A has decided 
for 1. If the algorithm breaks ties in favor of the initiator, C 
must decide for 1. However, B must follow the same 
algorithm, and so it must decide for 0. This means we have 
no agreement among the two nonfaulty processors. 
Proof of the full theorem generalizes this reasoning to a 
larger number of processors.[5] 
 
Possibility Results: 
Byzantine Agreement Conditions 
1. Agreement: All loyal generals agree on the same value. 
2. Validity: If the commander is loyal, then the common 

agreed upon value for all loyal lieutenants is the initial 
one given by the commander. 
 

Agreement Theorem 
Theorem: For any m, OM(m) satisfies the Validity and 
Agreement Conditions if there are more than 3m generals 
and at most m of them are faulters. 
 
Proof: 
The proof is by induction on m, similar to that of the 
Validity Lemma. As a basis for the induction, we consider 
the case of OM(0). If there are no faulters, it is easy to see 
that OM(0) satisfies the Validity and Agreement 
Conditions. We therefore can assume the theorem is true 
for OM(m-1) and prove that it is true for OM(m), m > 0. 
For the induction step, have m ³ 1. We consider two cases, 
depending on whether the commander is a faulter. 
1. Suppose the commander i is loyal. By taking k equal 

to m in the Validity Lemma, we see that OM(m) 
satisfies the Validity Condition. Moreover, since we 
are assuming the commander is loyal the Agreement 
condition is also satisfied. 

2. Suppose the commander is a faulter. At most m-1 of 
the lieutenants can be faulters. Since there are more 
than 3m processes, there are more than 3m-1 > 3(m-1) 
processes in k-{i}. We may therefore apply the 
induction hypothesis to conclude that OM(m-1) 
satisfies the Agreement and Validity Conditions. 
Hence, any two loyal lieutenants get the same vector of 
values v1,v2,…,V k-1, and therefore obtain the same 
value majority(v1,v2,…,Vk-1) in Step 3, proving the 
Agreement Condition. 

 
For an example, for 4 processors, interactively 
Four Processor Examples: Nonfaulty Commander 

 
Round 1: processor A executes OM(1), where processor C 
(in red) is faulty. 

K.Nagaraju et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 9 (1) , 2018, 1-3

www.ijcsit.com 2



 
Round 2: processors B, C, and D execute OM(0). Dashed 
lines indicate messages sent during the previous round. 
 
Three Processor Examples: Faulty Commander 

 
Round 1: processor A executes OM(1), where processor A 
is faulty. 

 
Round 2: processors B, C, and D execute OM(0).[6]. 
 

5.  CONCLUSION 
Byzantine Agreement is important both in the theory and 
practice of distributed computing. However, protocols to 
reach Byzantine Agreement are usually expensive both in 
the time required as well as in the number of messages 
exchanged. In this paper, we present a self-adjusting 
approach to the problem. The Mostly Byzantine Agreement 
is proposed as a more restrictive agreement problem that 
requires that in the consecutive attempts to reach 
agreement, the number of disagreements (i.e., failures to 
reach Byzantine Agreement) is finite. Fort faulty processes, 
we give an algorithm that has at most disagreements for 
4t or more processes. Another algorithm is given for k ≥ 
t+1 processes with the number of disagreements belowt2/2. 

Both algorithms use O(n3) message bits for binary value 
agreement.[7]. 
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